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A typical scene today
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Smartphones, wearables everywhere…

• Rely on the phone ion your pocket for
− communication
− shopping
− navigation…

• Multitude of data being collected
− map, location, GPS, 

heart rate, gait, 
preferences, …

• Can we build accurate models to predict mood & 
behaviour?
− emotion, stress, trust, intention, …

• For good uses…
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Why predict mood & behaviour?

• Monitoring of affective disorders
− stress, depression, bipolar, 

cognitive decline

and their management/regulation
− suggest coping strategies
− send alerts
− deliver medical intervention

• Also regulation of chronic medical conditions (diabetes, 
cardiac disorders, etc)

• Longer-term, effective human-robot collaboration
− assistive robotics and shared control

− cobotics
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AffecTech project

• Personalised and adaptive emotion regulation
− wearable systems for capturing emotion regulation
− apps for understanding emotions and regulatory processes
− personalised adaptive emotion regulation
− automated synthesis of emotion regulation strategies

AffecTech:Personal Technologies for Affective Health ITN. http://www.cs.ox.ac.uk/projects/
AFFECTech/ 
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Modelling challenges

• Cyber-physical systems 
− hybrid combination of continuous and discrete dynamics, 

with stochasticity
− autonomous control

• Data rich, data enabled models
− achieved through learning
− parameter estimation

− continuous adaptation

• Personalisation: key enabler of personalised healthcare
− automation of intervention strategies
− uniquely adapted to the individual



7

This lecture…

• Selected recent advances in quantitative modelling
− focus on physiological signals

• The pacemaker case study
− real CPS: non-linear hybrid dynamics, stochasticity
− optimal parameter synthesis
− personalisation
− in silico testing
− and more

• Multiple uses of quantitative models…
− attacks on biometric security
− intention prediction 
− emotion recognition
− and more
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Case study: Cardiac pacemaker

• Hybrid model-based framework
− timed automata model for pacemaker 

software
− hybrid heart models in Simulink

• http://www.veriware.org/heart_pm_methods.php
• Properties

− (basic safety) maintain 
60-100 beats per minute

− (advanced) detailed analysis 
energy usage, plotted against
timing parameters of the 
pacemaker

− parameter synthesis: find values
for timing delays that optimise
energy usage

Synthesising robust and optimal parameters for cardiac pacemakers using symbolic and 
evolutionary computation techniques. Kwiatkowska, Mereacre, Paoletti and Patane, HSB’16

http://www.veriware.org/heart_pm_
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Quantitative verification for pacemakers

• Model the pacemaker and the heart, compose and verify
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Quantitative verification for pacemakers
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Quantitative verification for pacemakers
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Model-based framework

• We advocate a model-based framework
− models are networks of communicating hybrid I/O automata, 

realised in Matlab Simulink
• discrete mode switching and continuous flows: electrical 

conduction system
• quantitative: energy usage and battery models
• patient-specific parameterisation

− framework supports plug-and-play composition of 
• heart models (timed/hybrid automata, some stochasticity)
• pacemaker models (timed automata)

Quantitative Verification of Implantable Cardiac Pacemakers over Hybrid Heart Models. 
Chen et al, Information and Computation, 2014

http://www.veriware.org/bibitem.php?key=CDKM13c
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Cardiac cell heart model

• Based on model of electrical conduction [Grosu et al]
− abstracted as a network of cardiac cells that conduct voltage

− cells connected by pathways, 
modelled using Simulink 
delay and gain components

− SA node is the natural 
pacemaker
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Cardiac cell heart model: single cell

• Single ventricular cell [Grosu et al]
− four modes: resting and final repolarisation (q0), stimulated 

(q1), upstroke (q2) and plateau and early repolarisation (q3)

− variables: v - membrane voltage, ist – stimulus current
− constants: VR – repolarisation voltage, VT – threshold, VO –

overshoot voltage

VO

VT VR

Early repolarization

Plateau

Final repolarization
Resting

Stimulated

Upstroke
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Property specification: Counting MTL

0 T

Aget Vget Aget Vget Aget Vget Aget Vget Vget Aget

1 min

1 min

Safety “for any 1 minute window, heart rate is in the interval [60,100]”
Event counting not expressible in MTL ( Metric Temporal Logic)
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Framework functionality

• Broad range of techniques 
− Monte-Carlo simulation of composed models

• with (confidence level) guarantees for non-linear flows

− (approximate) quantitative verification against variants of MTL
• to ensure property is satisfied

− parametric analysis
• for in silico evaluation, to reduce need for testing on patients

− automated synthesis of optimal timing parameters 
• to determine delays between paces so that energy usage is 

optimised for a given patient

− patient-specific parameterisation
− hardware-in-the-loop simulation

• parameter optimisation with respect to real energy measurements

• See http://www.veriware.org/pacemaker.php
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Correction of Bradycardia

Blue lines original (slow) heart beat, red are induced (correcting) 

0 2 4 6 8
0

20

40

60

80

100

120

140

Time [sec]

V
ol

ta
ge



18

Energy consumption

Efficiency “energy consumed must be below some fixed level”
Battery charge in 1 min under Bradycardia, varying timing parameters
Based on real power measurements

Hardware-in-the-loop simulation and energy optimization of cardiac pacemakers. 
Barker et al, In Proc EMBC, 2015
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Modulation during physical activity

Rate modulation during exercise. Black dashed line indicates 
metabolic demand, and the green and red curves show rate-adaptive 
VVIR and fixed-rate VVI pacemakers.

Formal Modelling and Validation of Rate-Adaptive Pacemakers, Kwiatkowska et al. In 
IEEE International Conference on Healthcare Informatics, ACM. 2014

http://www.veriware.org/bibitem.php?key=KLMP14
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From verification to synthesis…

• Automated verification aims to establish if a property holds 
for a given model

• Can we find a model so that a property is satisfied?
− difficult…

• The parameter synthesis problem is 
− given a parametric network of timed I/O automata, set of 

controllable and uncontrollable parameters, CMTL property ɸ
and length of path n

− find the optimal controllable parameter values, for any 
uncontrollable parameter values, with respect to an objective
function O, such that the property ɸ is satisfied on paths of 
length n, if such values exist

• Objective function
− maximise cardiac output, or ensure robustness

Synthesising Optimal Timing Delays for Timed I/O Automata. Diciolla et al. In14th
International Conference on Embedded Software (EMSOFT'14), ACM. To appear. 2014

http://www.veriware.org/bibitem.php?key=DKKM14
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Optimal timing delays

• Bi-level optimisation problem
• Safe heart rhythm CMTL property (inner problem) 

− at any time in [0,T] any two consecutive ventricular beats are 
between 500 and 1000 ms, i.e. heart rate of 60 and 120 BPM

• Cost function (outer problem)

− energy consumption in 1 minute

− mean difference between cardiac output and reference value

� = ⇤[0,T ] (vPeriod 2 [500, 1000])

2 ·#60000
0 (act = AP ) + 3 ·#60000

0 (act = V P )

P
(q,⌘)2V beat(⇢0) |⌘(CO)� CO|

|V beat(⇢0)|
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Synthesis results

• Solved through SMT encoding (inner problem) combined 
with evolutionary computation (outer problem)

• Pacemaker parameters:
− TLRI: time the PM waits 

before pacing atrium
− TURI: time before pacing

ventricle after atrial 
event

• Significant improvement 
(>50%) over default values
− path 20

• A (exact),B (evo) energy
• C (exact),D (evo) CO

− evo faster, less precise

Synthesising robust and optimal parameters for cardiac pacemakers using symbolic and 
evolutionary computation techniques, Kwiatkowska et al.,In Proc HSB 2015
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Case study: Personalisation

• Personalisation of wearable devices
− estimate parameters for a heart model based on ECG data
− generate synthetic ECG 
− useful for model-based development of personalised devices

• Developed HeartVerify based on Simulink/Stateflow
− variety of tools and techniques
− http://www.veriware.org/pacemaker.php

http://www.veriware.org/pacemaker.php
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Estimation from ECG data

• Method for personalisation of parameters
− filtering and analysis of the input ECG
− detection of characteristic waves, P, QRS, T
− mapping of intervals: explicit parameters
− implicit parameters, eg conduction delays, 

use Gaussian Process optimisation
− compare synthetic ECG with real ECG 

using statistical distance

• Synthetic ECG = sum of Gaussian functions 
centred at each wave li
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Statistical distance

• Computed between the filtered and synthetic ECG
• How similar are two signals? 

− returns value between 0 (identical) and 1
• Works by phase assignment 

− discretise the wave forms into discrete distributions,
− then compute total variation distance

− finally compute the mean of the distances for each point

• Method not affected by the heart rate 
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Raw ECG signal 

• Real data
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Filtered signal

• P,Q,R,S,T waves identified
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Synthetic ECG

• Produced by the personalised model
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Wearable authentication devices

• Nymi band
− ECG (Electrocardiogram) used 

as a biometric identifier 
− first creates biometric 

template
− compares with real ECG signal  

when required
− difficult to copy

• Can be paired with devices
− with an app companion

• Proposed uses 
− for access into buildings 

and restricted spaces
− for payment,  etc
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Case study: Attack on ECG biometrics

• ECG biometrics
− increasing in popularity
− Nymi band
− are they secure?

• Synthetic ECGs
− model-based: build model

from data, 41 volunteers
− inject synthetic signals to break 

authentication
− 80% success rate

• Results
− serious weakness
− discuss countermeasures

Broken Hearted: How to Attack ECG Biometrics, Ebertz et al., In Proc NDSS 2017

Fig. 2: The Nymi Band

as an app that runs on the user’s smartphone or tablet. The
NCA performs two main functions, enrollment and activation.

During enrollment, the Nymi Band is paired to an NCA.
The correct pairing is confirmed by displaying a pattern on the
Nymi Band which the user has to verify against a pattern shown
by the NCA (similar to the numerical codes used in Bluetooth
device pairing). The Nymi Band and NCA then agree on a
shared key that binds the Nymi Band to this NCA. Following
pairing, the user is prompted to touch the band’s top electrode
with his index finger, after which their ECG is measured until
a specific amount of ECG data of sufficient quality is captured.
The resulting biometric template is then encrypted and stored
by the NCA on the phone or tablet. Besides the shared secret,
no information is stored on the band at this time.

Activation is performed when the Nymi Band is taken off
and put back on again. Specifically, this event is detected by
the contact between two pins on the inside of the buckle being
interrupted (see Figure 2). As such, the Nymi Band does not
truly perform continuous authentication in the biometric sense,
but authenticates the user once and then detects a possible
change in user identity through the band being taken off. The
activation process is started by the user selecting the appropriate
action in the NCA, after which they can choose to perform ECG
authentication, or to use their backup password. If they choose
ECG, they are again prompted to touch the top electrode to
begin ECG measurement. Unlike enrollment, which runs until
a certain number of seconds of valid ECG data is collected,
activation runs until the NCA is sufficiently convinced of the
wearer’s identity. Once one or several heartbeats are observed
that match the owner’s template, the Nymi Band is put into
activated mode by the NCA. If no matching heartbeats are
observed after 60 seconds, the user is automatically rejected.

Once the Nymi Band is activated, it can be paired with
NEAs. Examples of NEAs include desktop computers (that
can then be unlocked without using a password), wearable
devices like smart watches and even more complex systems
like cars. At the time of writing, the Nymi Band is being
trialled for contactless payments. Initially, the band is paired
with the NEA through a process similar to regular Bluetooth
pairing. The Nymi Band displays a pattern using the five LEDs
(leading to only 32 possible combinations), which the user is
meant to confirm before proceeding. The Nymi Band and the
NEA then use a Diffie-Hellman key exchange to negotiate

a shared key, which is stored directly on the band. After
pairing, the possession of the shared key (i.e., the presence of
the unlocked band) can then be confirmed using a standard
challenge-response protocol.

There is one additional capability of NEAs that is relevant
to the remainder of the paper: The Nymi SDK grants NEAs
direct access to the band’s ECG sensor. Once the band and
an NEA are paired, the NEA can request the collection of an
arbitrary amount of raw ECG data. While this data collection
does not have to be explicitly approved by the user, the sensor
design requires the user to touch the top electrode with their
finger, thus making covert data collection virtually impossible.
It is noteworthy that this functionality has been removed from
the official SDK from version 2.0 onwards.

The Nymi Band’s threat model is described in the Nymi
Whitepaper. The band is designed as a three-factor authen-
tication system. In order to communicate with NEAs, an
attacker has to be in possession of the Nymi Band and the
NCA (typically the user’s phone) and be able to bypass the
biometric authentication. It is noteworthy that the latter, while
not explicitly stated in the Whitepaper, can also be achieved
by using the user’s backup password (e.g., through guessing
a weak password or social engineering). This is particularly
dangerous, as the presence of a second authentication factor
often leads to users choosing weaker passwords [26]. In terms
of bypassing ECG authentication (rather than using a password),
the Nymi Whitepaper claims that

”There is currently no known means of falsifying
an ECG waveform and presenting it to a biometric
recognition system.”

In the following sections we will investigate the validity of
this claim.

III. SPOOFING ECG SIGNALS

In this section, we show that fake ECG signals can be
injected into ECG enabled recognition systems. We start out
with the hypothesis that captured ECG measurements can be
reproduced at the biometric sensors without the benign user
having to be present.

A. Motivation

Like any other physiological trait, ECG signals can be
captured and (digitally) stored for an indefinite amount of time
as the signals are relatively immutable. Biometric samples from
physiological traits do not lose validity and, if the fidelity of
the stored signal is sufficiently high, it is possible to physically
reproduce the actual biometric signal at a later time. This
process does not require the individual from whom the biometric
measurements originate to be present.

In ECG recognition, biometric readings are usually acquired
with the help of an electrocardiograph, which works by
measuring the minute voltage differences of the human heart
over time. With today’s technologies in signal synthesis and
digital to analog conversion, artificially creating electrical
signals that exactly represent stored ECG signals is feasible.

While forging ECG signals is not a concern in the medical
domain, it is potentially problematic for ECG-based authentica-
tion systems. If a biometric system does not feature an agent or
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Fig. 4: Arbitrary waveform generator connected to the Nymi
Band via the modified charging lead. The negative output of
the waveform generator is clamped to the electrode facing the
wrist and the positive output is attached to the second electrode
of the band using the modified charging lead.

2) Software Waveform Generator: Nowadays, almost every
personal electronic device, be it mobile or stationary, possesses
a dedicated sound card or integrated sound functionality to
facilitate analog audio output. Audio signals are an electrical
representation of sound, i.e., a mechanical wave that propagates
through a medium. Thus, sound cards need to be able to
output relatively high-frequency signals. This capability can
be harnessed and lets a sound card be utilized as a low-
frequency waveform generator. In most cases, no hardware
modifications are needed and arbitrary electrical signals can
be readily generated, provided that the sound card is driven
with the right software components. Naturally, a sound card
based waveform generator is not as capable as a dedicated
hardware solution and has many limitations such as a narrow
range for the generated voltage. However, the nature of ECG
signals, which are inherently low-frequency and on the order
of a few hundred microvolts, can be generated by a sound
card without any problems The majority of dedicated sound
cards as well as devices with integrated sound support have
output frequencies of up to 20kHz, which is well than enough. A
software waveform generator based on a sound card is therefore
a viable option for signal injection. It not only drastically
reduces cost, but also simplifies the injection method. Figure 5
depicts a possible setup where a software waveform generator
is run on a laptop that injects the generated signal though its
audio output port.

3) Audio Playback: Instead of using a software waveform
generator and changing the function of the sound card, we
explore the possibility of playing back stored ECG signals
on the sound card as actual sound. Such an approach does
not require specialized software, i.e., a software waveform
generator, and might be executed on any device capable of
outputting analog audio signals. This could reduce effort and
complexity of a presentation attack to a great extent.

The challenge of replicating an ECG signal directly as audio
output consists of transforming the digital representation of
an ECG signal into an audio file that can be played back on
the sound card. We wrote software that filters the ECG signal,
applies the correct scaling of voltage levels, sets the sampling
rate and finally stores the signal as an audio file (WAV format).

Fig. 5: A laptop is connected to the Nymi Band via the modified
charging lead. Setup is analogous to the configuration involving
the hardware waveform generator, apart from the coaxial cable
being plugged into the audio output port of a laptop. The laptop
either runs a software waveform generator or is used to play
back an ECG signal that is encoded in an audio file. The laptop
might be replaced through any electronic device with audio
playback capability.
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Fig. 6: Reference ECG signal compared to the ECG traces
measured when the reference signal is injected using three
different injection methods. The traces are captured by the
Nymi Band and read out with the Nymi software development
kit.

The resulting file can then be played back on almost any device
and potentially injected into the sensors of a biometric system
based on ECG recognition.
The contraption we used for the evaluation of the audio playback
as injection method is identical to the hardware setup in Figure 5.
Nevertheless, the attack can be carried out with any device
capable of analog audio output.

C. Injection Quality

In order to validate the presented signal injection methods
and assess their quality, we select a stored reference signal,
reproduce and inject it using each of the three approaches.
We then compare the reference signal to the traces the
electrocardiograph measures while injection takes place. In
case of the Nymi Band, the captured traces can be accessed

5
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Case study: Transferability of attack

• Predicting how easy it is to attack 
biometrics when collecting data 
from different sources
− ECG, eye movements, 

mouse movements, 
touchscreen dynamics, 
gait 

• Model-based framework
• Features

− amplitude for ECG
− curvature for mouse

• Human study
− easy for eye movements
− ECG more chaotic

When your fitness tracker betrays you, Ebertz et al., In Proc S&P 2018



33

Case study: Intention anticipation

• Gaze tracking can reveal human
intention
− driver assistance
− semi-autonomous driving
− handover

• Predictive framework
− model-based: build model

from data, 124 cases from 
75 drivers 

• Model (ML+HMM)
− anticipates intention 

3.64 seconds before a 
real action was carried out

− with 93.5% accuracy

Gaze-Based Intention Anticipation over Driving Manoeuvres, Wu et al., submitted
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Capturing emotion

• Affective analysis of physiological signals
− electrocardiogram (ECG), electrodermal activity (EDA), breath 

rhythm, skin temperature, etc
− single-source or multi-sensor fusion

• ECG signal attractive
− unobtrusive, low cost, widespread, high sensitivity

• Conventional approach
− multi-step process
− extract heart rate (HR) and apply heart-rate variability (HRV) 

analysis
− feature extraction, selection and calibration difficult

• Here propose end-to-end deep learning solution
− supports personalization and feature calibration
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AffecTech approach
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Deep learning solution

• Convolutional recurrent network (CRNN), classifier
− ECG only, maxpooling to extract salient features
− denoising of ECG signal 
− data augmentation, in view of sparsity
− re-balancing, to deal with overrepresentation

• Key novelty: Siamese architecture (S-CRNN) to implement 
feature calibration
− two copies of CRNN, sharing parameters
− process user-specific template and data
− template learn before experiment

• Evaluation on dataset for arousal in driving
− binary low/high arousal
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CRNN architecture

• Convolutional Recurrent Neural Network for arousal 
recognition



38

Siamese architecture

• Feature calibration (relative feature saliency)
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Results for S-CRNN

• 21% improvement over HRV analysis

Calibrating the Classifier: Siamese Neural Network Architecture for End-to-End Arousal 
Recognition from ECG, Patane and K., In Proc LOD 2018
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PhysioNet Challenge 2018

• Annual challenge to address significant unsolved clinical 
problems: classifying sleep arousals from EEG
− Siamese architecture successful, placed 5th in competition

Automated Recognition of Sleep Arousal using Multimodal and Personalized Deep 
Ensembles of Neural Networks., Patane et al, In Proc CinC 2018
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Next steps: probabilistic guarantees

• Need to probabilistic guarantees: probability that local 
perturbations result in predictions that are close to original

• Work with Bayesian inference and
• Gaussian processes (GPs)

• Define safety with prob 1-!

"#$%(∃y ∈ η s.t. ||f(x)-f(y)||>( | D) ≤ !

• i.e. conditioned on training data D
• NB differs from pointwise thresholding in Bayesian deep 

learning

•

x

y

Robustness Guarantees for Bayesian Inference with Gaussian Processes., Cardelli et al., In 
Proc AAAI 2019
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Probabilistic guarantees for GPs

• Computation for general stochastic processes intractable
• For GPs, can obtain tight upper bounds by

− approximating extrema of mean and variance for a test point
− using Borell-TIS inequality
− and solving optimization problems (analytical or convex opt)

• Applies to fully-connected (and convolutional) neural 
networks in the limit of infinitely many neurons…

• Scalability continues to be an issue
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Looking to the future…

• Progress towards emotion recognition from physiological 
signals
− end-to-end deep learning architecture
− personalisation and feature calibration

− generalises to other contexts, good performance

• Future directions
− robustness guarantees

− synthesis of personalised intervention strategies
− multi-modal sensor fusion
− incorporation of contextual data
− more complex disorders
− intention prediction, biofeedback
− brain machine interfaces, connection to neuroscience…
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