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A typical scene today




Smartphones, wearables everywhere...

- Rely on the phone ion your pocket for
— communication
— shopping
— navigation...

- Multitude of data being collected

— map, location, GPS,
heart rate, gait,
preferences, ...

- Can we build accurate models to predict mood &
behaviour?

— emotion, stress, trust, intention, ...

- For good uses... 3



Why predict mood & behaviour?

Monitoring of affective disorders

— stress, depression, bipolar,
cognitive decline

and their management/regulation
— suggest coping strategies

— send alerts

— deliver medical intervention

- Also regulation of chronic medical conditions (diabetes,
cardiac disorders, etc)

- Longer-term, effective human-robot collaboration
— assistive robotics and shared control
— cobotics



AffecTech project

People can experience different types of mental health disorders. From anxiety and panic attacks to bipolar disorder,
depression and eating disorders, these problems can affect your thinking, mood, and behavior.

To combat affective health disorders, a coalition of scientists from around the world have launched the AffecTech
project. In the next four years, this will look into developing new technologies that will empower people to better
understand their emotions and deal with them on a daily basis. With some 4.88 million euros in funding, the European
based research project kicked off this month.

- Personalised and adaptive emotion regulation
— wearable systems for capturing emotion regulation
— apps for understanding emotions and regulatory processes
— personalised adaptive emotion regulation
— automated synthesis of emotion regulation strategies

AffecTech:Personal Technologies for Affective Health ITN. http:/ /www.cs.ox.ac.uk/projects />
AFFECTech/




Modelling challenges

Cyber-physical systems

— hybrid combination of continuous and discrete dynamics,
with stochasticity

— autonomous control

- Data rich, data enabled models o™
. . O 7 1N e
— achieved through learning <o e Thetec( N
parameter estimation N _;O_L,f.gﬁ ! AT
— continuous adaptation N 4

Personalisation: key enabler of personalised healthcare
— automation of intervention strategies
— uniquely adapted to the individual



This lecture...

Selected recent advances in quantitative modelling
— focus on physiological signals
- The pacemaker case study
— real CPS: non-linear hybrid dynamics, stochasticity
— optimal parameter synthesis

— personalisation
— in silico testing
— and more
Multiple uses of quantitative models...
— attacks on biometric security
— intention prediction
— emotion recognition
— and more



Case study: Cardiac pacemaker

- Hybrid model-based framework

— timed automata model for pacemaker
software

— hybrid heart models in Simulink
http://www.veriware.org/heart_pm_methods.php
- Properties

— (basic safety) maintain
60-100 beats per minute

— (advanced) detailed analysis
energy usage, plotted against
timing parameters of the
pacemaker

— parameter synthesis: find values
for timing delays that optimise
energy usage
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Synthesising robust and optimal parameters for cardiac pacemakers using symbolic and 8
evolutionary computation technigues. Kwiatkowska, Mereacre, Paoletti and Patane, HSB’16
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http://www.veriware.org/heart_pm_

Quantitative verification for pacemakers

- Model the pacemaker and the heart, compose and verify

aorta

(to body) atrioventricular

bundle of His
pulmonary

artery
(to lungs) left
atrium
sinoatrial
[SA) node

atrioventricular £ branch

(AV) node

right atrium

right bundle left
branch - ventricle

right ventricle



Quantitative verification for pacemakers
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module VRP

s_vrp:[0..2] init O;
t_vrp : clock;

/7 Invariants for clock t_vrp

invariant
(s_vrp = 2 => (t_vrp <= TVRP)) &
(s_vrp =1 => (t_vrp <= 0 ))
endinvariant

0

[Vget] (s_vrp = 0) -> (s_vrp' = 1) & (t_vrp'=0);
[VP] (s_vrp = 0) -=> (s_vrp' = 2) & (t_vrp' = 0);



Quantitative verification for pacemakers
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- s_vrp:[0..2] init 0;
t_vrp : clock;

/7 Invariants for clock t_vrp
invariant
(s_vrp = 2 => (t_vrp <= TVRP)) &
(s_vrp =1=> (t_vrp <= 0 ))
endinvariant

[Vget] (s_vrp = 0) -> (s_vrp' = 1) & (t_vrp'=0);
[VP] (s_vrp =0) => (s_vrp' = 2) & (t_vrp' = 0);



Model-based framework

- We advocate a model-based framework

— models are networks of communicating hybrid 1/O automata,
realised in Matlab Simulink

. discrete mode switching and continuous flows: electrical
conduction system

. quantitative: energy usage and battery models
. patient-specific parameterisation
— framework supports plug-and-play composition of
. heart models (timed/hybrid automata, some stochasticity)
. pacemaker models (timed automata)
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(a) Heart model (b) Pacemaker model
Quantitative Verification of Implantable Cardiac Pacemakers over Hybrid Heart Models. 12
Chen et al, Information and Computation, 2014



http://www.veriware.org/bibitem.php?key=CDKM13c

Cardiac cell heart model

- Based on model of electrical conduction [Grosu et al]
— abstracted as a network of cardiac cells that conduct voltage

\:/5..7 VS{_at J I Vs':. vt I ?

(SA node L(i( Atrium }L(ﬂ Ventricle

L

| | 4. .1 |

V.? Vs(at)? Aget! Vi(uvt)? Vget!

— cells connected by pathways,
modelled using Simulink
delay and gain components

— SA node is the natural
pacemaker

13



Cardiac cell heart model: single cell

- Single ventricular cell [Grosu et al]

— four modes: resting and final repolarisation (qy), stimulated
(g;), upstroke (g,) and plateau and early repolarisation (qgs3)

Vo

{Vs?h {v < Vr}, {vn = v}

>

Early repolarization b= ao?u,g(ﬁ‘)

v<Vp
Plateau T

Vo (o < Ve, (0}

Upstroke

{<}:{v < Vg}, {0}

1V

Stimulated

VR

Final repolarization
Resting

— variables: v - membrane voltage, i ; - stimulus current

— constants: Vg - repolarisation voltage, V1 - threshold, Vg -
overshoot voltage

14



Property specification: Counting MTL

Aget Vget Aget Vget Aget Vget Aget Vget Vget Aget

LTI

0 T

1 min

1 min

D[O’T](#{)Vget > B1 A#qVget < Bs)

Safety ‘for any 1 minute window, heart rate is in the interval [60,100]”

Event counting not expressible in MTL ( Metric Temporal Logic)
15



Framework functionality

Broad range of techniques
— Monte-Carlo simulation of composed models
. with (confidence level) guarantees for non-linear flows
— (approximate) quantitative verification against variants of MTL
. to ensure property is satisfied
— parametric analysis

. for in silico evaluation, to reduce need for testing on patients
— automated synthesis of optimal timing parameters

. to determine delays between paces so that energy usage is
optimised for a given patient

— patient-specific parameterisation
— hardware-in-the-loop simulation

. parameter optimisation with respect to real energy measurements

See http://www.veriware.org/pacemaker.php -



Correction of Bradycardia
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Blue lines original (slow) heart beat, red are induced (correcting)
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Energy consumption
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Efficiency “energy consumed must be below some fixed level”
Battery charge in 1 min under Bradycardia, varying timing parameters
Based on real power measurements

Hardware-in-the-loop simulation and energy optimization of cardiac pacemakers. 18
Barker et al, In Proc EMBC, 2015




Modulation during physical activity
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Rate modulation during exercise. Black dashed line indicates
metabolic demand, and the green and red curves show rate-adaptive
VVIR and fixed-rate VVI pacemakers.

Formal Modelling and Validation of Rate-Adaptive Pacemakers, Kwiatkowska et al. In 19
IEEE International Conference on Healthcare Informatics, ACM. 2014



http://www.veriware.org/bibitem.php?key=KLMP14

From verification to synthesis...

- Automated verification aims to establish if a property holds
for a given model

- Can we find a model so that a property is satisfied?
— difficult...

- The parameter synthesis problem is

— given a parametric network of timed 1/0O automata, set of

controllable and uncontrollable parameters, CMTL property ¢
and length of path n

— find the optimal controllable parameter values, for any
uncontrollable parameter values, with respect to an objective
function O, such that the property ¢ is satisfied on paths of
length n, if such values exist

- Objective function
— maximise cardiac output, or ensure robustness

Synthesising Optimal Timing Delays for Timed |/O Automata. Diciolla et al. In 74thA 21
International Conference on Embedded Software (EMSOFT'14), ACM. To appear. 2014



http://www.veriware.org/bibitem.php?key=DKKM14

Optimal timing delays

O =

- Bi-level optimisation problem
. Safe heart rhythm CMTL property (inner problem)

OT] (yPeriod € [500, 1000])

— at any time in [0,T] any two consecutive ventricular beats are
between 500 and 1000 ms, i.e. heart rate of 60 and 120 BPM

. Cost function (outer problem)

2 #509% (act = AP) + 3 - #5°°%° (act = V P)

— energy consumption in 1 minute

Z(qm)EVbeat(p’) ’77(00) — @‘

[Vbeat(p')|

— mean difference between cardiac output and reference value

22



Synthesis results

- Solved through SMT encoding (inner problem) combined
with evolutionary computation (outer problem)

- Pacemaker parameters:

— TLRI: time the PM waits a) Bradycardia: slow heart rate

before .pacmg atrium | -  Default
— TURI: time before pacing
ventricle after atrial 1600
event o
- Significant improvement
(>50%) over default values £
— path 20 "

600

- A (exact),B (evo) energy
- C (exact),D (evo) CO
— evo faster, less precise
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Synthesising robust and optimal parameters for cardiac pacemakers using symbolic and 23
evolutionary computation techniques, Kwiatkowska et al.,In Proc HSB 2015




Case study: Personalisation

Voltage (mV)
|

TR O

Time (s)

Personalisation of wearable devices

— estimate parameters for a heart model based on ECG data

— generate synthetic ECG

— useful for model-based development of personalised devices
Developed HeartVerify based on Simulink/Stateflow

— variety of tools and techniques

— http://www.veriware.org/pacemaker.php

24


http://www.veriware.org/pacemaker.php

Estimation from ECG data

Method for personalisation of parameters .
— filtering and analysis of the input ECG
— detection of characteristic waves, P, QRS, T
— mapping of intervals: explicit parameters

— implicit parameters, eg conduction delays,
use Gaussian Process optimisation

— compare synthetic ECG with real ECG
using statistical distance

—

Synthetic ECG = sum of Gaussian functions o
centred at each wave |, s

synthECG(H) = Y Y @ (\p( “‘”)

ie{P.Q.R,5,T} l; €Peaks;

25



Statistical distance

Computed between the filtered and synthetic ECG
How similar are two signals?
— returns value between 0 (identical) and 1

- Works by phase assignment
— discretise the wave forms into discrete distributions,
— then compute total variation distance

s 4
d(/-li.p-/-‘j.])_) = '; Z l/-li.p — Hj,pl-

rzeX

— finally compute the mean of the distances for each point

. _ = )d( Li ns I '.))
d(w;, w;) = 2per |}/7| ps Mg

Method not affected by the heart rate >6



Raw ECG signal

Real data
600 T I I | I | | 1 1
400 | _
=
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‘0‘; 200 |- .
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-200 _
] : g 2 : ; ; g ; 10
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Filtered signal

- P,Q,R,S, T waves identified

|—ECGSigna| © Rwave © Swave © Twave © Qwave © Pwave

AN

28



Synthetic ECG

- Produced by the personalised model

29




Wearable authentication devices

Nymi band

— ECG (Electrocardiogram) used
as a biometric identifier

— first creates biometric
template

— compares with real ECG signal
when required

— difficult to copy
- Can be paired with devices
— with an app companion
Proposed uses

— for access into buildings
and restricted spaces

— for payment, etc

30



Case study: Attack on ECG biometrics

- ECG biometrics
— increasing in popularity
— Nymi band
— are they secure?

- Synthetic ECGs

— model-based: build model
from data, 41 volunteers

— inject synthetic signals to break
authentication

— 80% success rate

Results
— serious weakness

— discuss countermeasures

Voltage level [uV]

75-
50-
25-

-25-

75
50
25

Reference signal

Hardware waveform generator

Software waveform generator

MSE = 0.015

Audio playback

MSE = 0.035 w

—25-_,

MSE = 0.017

0

Broken Hearted: How to Attack ECG Biometrics, Ebertz et al., In Proc NDSS 2017 31




Case study: Transferability of attack

-+ Predicting how easy it is to attack
biometrics when collecting data
from different sources

— ECG, eye movements,
mouse movements,
touchscreen dynamics,
gait

- Model-based framework

target target
- Features -, =
. - 'O@r& .@\o *o,
— amplitude for ECG . -\, ) wm . —EeEnD )
r rtph
— curvature for mouse {n-. . smananene
“ . i smartwatch
- Human StUdy victim sad o population security
< a versary%. | © measure
o %
— easy for eye movements e a
— ECG more chaotic

source source

When vyour fitness tracker betrays you, Ebertz et al., In Proc S&P 2018 32




Case study: Intention anticipation

- Gaze tracking can reveal human r
Intention

— driver assistance

— semi-autonomous driving

— handover
. Predictive framework

— model-based: build model

from data, 124 cases from
75 drivers (a) G3P14E2’s intention from gaze.

G3P14E2's Intetion from Fixation _
. 4 g hd hd b v

. Model (ML-+HMM) ' o

— anticipates intention
3.64 seconds before a
real action was carried out

— with 93.5% accuracy 1 2z 3 4 5 6 7 8 9 10

Fixation Point

Probability Value

Gaze-Based Intention Anticipation over Driving Manoeuvres, Wu et al., submitted 33




Capturing emotion

- Affective analysis of physiological signals

— electrocardiogram (ECG), electrodermal activity (EDA), breath
rhythm, skin temperature, etc

— single-source or multi-sensor fusion
ECG signal attractive

— unobtrusive, low cost, widespread, high sensitivity
Conventional approach

— multi-step process

— extract heart rate (HR) and apply heart-rate variability (HRV)
analysis

— feature extraction, selection and calibration difficult

Here propose end-to-end deep learning solution
— supports personalization and feature calibration
34



AffecTech approach

Project topic: Personalisation and Verification for Affective Modelling.

Step 1: Modelling

%+ 2

Step 2: Verification

/N

Safety Requirements /

Template Model User-specific Data Threat Models

<7

ZH
(S
W

{”

N

Personalised Model Certified Model
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Deep learning solution

Convolutional recurrent network (CRNN), classifier
— ECG only, maxpooling to extract salient features
— denoising of ECG signal
— data augmentation, in view of sparsity
— re-balancing, to deal with overrepresentation

Key novelty: Siamese architecture (S-CRNN) to implement
feature calibration

— two copies of CRNN, sharing parameters
— process user-specific template and data
— template learn before experiment

Evaluation on dataset for arousal in driving
— binary low/high arousal

36



CRNN architecture

Random Convolutional Pooling Convolutional Recurrent
Subsampling Layer Layer Layer ¢ Layers

i i : : :| RNN
—i—s E § - 1 i

......

LR ] *
©
B
. Sea,
. [] --- []
- o ey
= e

020%2 T020%16 BTo%0 128x128
Input Feature extraction Classification Output

. Convolutional Recurrent Neural Network for arousal
recognition
37



Siamese architecture

Current
window

e Sl

Parameter
sharing

<>

User-specific
template

Input Feature Extraction || Feature Calibration | | Arousal

Feature calibration (relative feature saliency)
38



Results for S-CRNN

1 K-NN =1 RF r—1 CRNN
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Population size Population size

- 21% improvement over HRV analysis

Calibrating the Classifier: Siamese Neural Network Architecture for End-to-End Arousal 39
Recognition from ECG, Patane and K., In Proc LOD 2018




PhysioNet Challenge 2018

You SN00ZE, You WIN: THE PHYSIONET/COMPUTING IN CARDIOLOGY CHALLENGE 2018
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- Annual challenge to address significant unsolved clinical
problems: classifying sleep arousals from EEG

— Siamese architecture successful, placed 5% in competition

Automated Recognition of Sleep Arousal using Multimodal and Personalized Deep 40
Ensembles of Neural Networks., Patane et a/, In Proc CinC 2018




Next steps: probabilistic guarantees

- Need to probabilistic guarantees: probability that local
perturbations result in predictions that are close to original

- Work with Bayesian inference and
Gaussian processes (GPs)

- Define safety with prob 1-¢ 0o /\

Prob(3y € n s.t. |[|[f(x)-f(y)||>6 | D) < ¢

- i.e. conditioned on training data D

- NB differs from pointwise thresholding in Bayesian deep
learning

Robustness Guarantees for Bayesian Inference with Gaussian Processes., Cardelli et a/., In 41
Proc AAAI 2019




Probabilistic guarantees for GPs

Computation for general stochastic processes intractable
For GPs, can obtain tight upper bounds by
— approximating extrema of mean and variance for a test point
— using Borell-TIS inequality
— and solving optimization problems (analytical or convex opt)

- Applies to fully-connected (and convolutional) neural
networks in the limit of infinitely many neurons...

0 0.05 0.1 0.15 0.2 0.25 0.3
)

Scalability continues to be an issue
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Looking to the future...

- Progress towards emotion recognition from physiological
signals

— end-to-end deep learning architecture
— personalisation and feature calibration

— generalises to other contexts, good performance

- Future directions
— robustness guarantees
— synthesis of personalised intervention strategies
— multi-modal sensor fusion
— incorporation of contextual data
— more complex disorders
— intention prediction, biofeedback
— brain machine interfaces, connection to neuroscience...

43
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