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A Tribute To Oded?

Disclaimer: several ways this talk is (sort of) like one of Oded’s
I Starts with some high level “French Cafe”
I Reuses bunch of un-organized old slides and recurrent examples

(some also related to coffee)
I Contains doses of cynism covering up for genuine curiosity and

dedication to research and science
I Eventually enthusiastically dives into unnecessary details, possibly

forgeting about reality and losing audience for a while
I Ends with time-invariant Future Works and Perspectives
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Where Do We Come From?

Verimag, a computer scientists lab, specializing in programs verifying
programs

Sometimes compromising with control engineers, embedded systems
designers, circuit designers, etc

Oded was certainly the boldest compromising himself with applied
mathematicians, physicists and even biologists...
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Why Systems Biology?
A summary of Oded’s views (quotes from opening remarks of TSB’11)

Cynical: When you have a hammer, everything looks like a nail.

Fortunately, my hammer is universal.

Arrogant: Biologists need real scientists to guide them (Math, CS, physicists)

Like monotheists converting the pagans, these merchants of abstract
methodologies try to impress the poor savage with their logics and miracles

Humble: Living systems are more mysterious and primordial than the prime
numbers, the algebra of Boole or the free monoid

We should be very happy and proud for doing, for once, something meaningful

Sober: Biology is dominated by data (omics)
I Systems Biology is about seeking some clearer (conceptual and

mathematical) models of dynamical systems at various levels of abstraction
I These models, if thoughtfully constructed, may help reducing the gap

between cellular biochemistry and physiology
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Why Systems Biology? (subjective)

Looking back at my own motivations, I was mostly in the sober/humble
view

Convinced that some dose of formal methods can and should help biology

But with less ambitious goal on the modeling part, focusing on more
specific aspects: parameters, simulation, specifications,...

Next are a few introductory slides from a talk I gave to an unexpected
audience in 2010...
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Formal Verification

A domain taking its roots in early computer science theory (language and
automata theory), discrete mathematics, logics, even philosophy

Its goal: to prove correctness

Growing in applicability/popularity steadily since the early 80s and the
advent of Model Checking (Turing award of Clarke, Emerson and Sifakis in
2007)

Its popularity “benefited” from spectacular failure of simple testing and
bug finding in the 90s (Pentium bug, Ariane 5 self-destruction due to a
software bug)
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Proving correctness?

Correctness is a subjective notion until it is defined formally.
For this we need:
I a description of the systems behaviors
I a specification language to describe desired (good) and unwanted

(bad) properties

Coffee machine example
I a good property is: if I insert a coin and push ’coffee’, I get coffee
I a bad one: I get a tea (and no change)

The system is declared correct iff

all the behaviors of the system satisfies all the good properties and none of
the bad ones
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Reactive Systems and Temporal Logics

A key issue is the appropriate choice of language to describe properties:
I Enough expressivity
I Ease of writing specification

Temporal logics popularized in 1978 by Amir Pnueli when programs shifted
from simple input-output relations to reactive programs,

A typical reactive program is an operating system:
I a good property is always when the mouse is moved, the cursors

moves
I a bad one: always eventually a blue screen appears and nothing

happens
A good property such as the one above is a liveness property. Living
systems are typically reactive programs..
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From Verification to Synthesis

Verification of mis-conceived systems can be tedious and frustrating.
Rather than chasing bugs, can’t we prevent them from happening in the
first place ?

Synthesis is the ultimate goal of Formal Verification:

Building correct-by-construction systems directly from specifications

For synthesized systems, verification is unnecessary.
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Synthesis in the Wild

Synthesis is a difficult problem: decades of research, actually applied for
hardly a couple of years to produce small digital circuits

Attempts to apply synthesis in even more challenging context: software,
analog circuits , control engineering, biology, etc

Is this reasonnable/useful ? In most cases, no. A common syndrome:

When you have a hammer, everything looks like a nail

Still, genuine belief that diffusing formal methods to other, more primitive
scientific domains, if done in an humble and intelligent way, can do some
good
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1 Parameter Synthesis
Parametric Systems
Sensitive Systematic (aka Barbaric) Simulation

2 Parameter Synthesis with Formal Specifications
Signal Temporal Logic
Property parameters
Model parameters

3 Some Results and Concluding Remarks
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Parametric Systems

Definition (Parametric System)
An object mapping a finite set of values (parameters) to a set of signals

p = (p1, · · · , pn) System S x[t] :

I p, t, x[t] in R domain, t 7→ x[t] continuous “almost everywhere”

I Typically (for us): S is a (hybrid) system of ordinary differential equations

I But most of what we do works for black box parametric systems
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Example: acute inflamatory response to pathogen
dP

dt
= kpgP

(
1 − P

p∞

)
− kpmsmP

µm + kmpP
− kpmf(NA)P,

dNA

dt
= snrR

µnr +R
− µnNA,

dD

dt
= kdnfs(f(NA)) − µdD,

dCA

dt
= sc + kcnf(NA + kcmdD)

1 + f(NA + kcmdD) − µcCA,

Parameters
I “Initial” conditions: P (t = 0), NA(t = 0), D(t = 0), CA(t = 0).
I Others: kpg, p∞, kpm, sm, µm, snr, . . .

Depending on their values, three possible outcomes
I Health: pathogen and damage are driven to a low steady state
I Aseptic death: pathogen is eliminated but not tissue damage
I Septic death: tissue damage and pathogen remain high
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Healthy outcome

Pathogen

Damage
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Aseptic death outcome

Pathogen

Damage
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Septic death outcome

Pathogen

Damage
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The problem with parameters

We don’t know them.

Traditional approach to solve this
I Calibration: Find p such that ‖S(p)− xmeasured‖ is minimized.
I Usually some optimization problem.

Validation (hard)
I S(p) predicts xmeasured before it’s measured
I (and not just once by luck)
I Robustness: S(p + ε) is not vastly different from S(p)
I ?
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Formal methods and parameter synthesis

System |= ? Specifications

Verification

Synthesis

I Parameter synthesis reduces synthesis to finding “a few” valid values for
parameters

I We consider:
I System parameters: for which values is the spec. satisfied ?
I Specification parameters: what is the spec. actually satisfied ?

In the following we focus on reachability specifications
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1 Parameter Synthesis
Parametric Systems
Sensitive Systematic (aka Barbaric) Simulation

2 Parameter Synthesis with Formal Specifications
Signal Temporal Logic
Property parameters
Model parameters

3 Some Results and Concluding Remarks
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Reachability analysis and systematic simulation

Reachable set
Note x(t,p) the simulation trace obtained using p. We define

Reach(T,P) = {x(t,p) such that t ≤ T,p ∈ P}

Lots of very sophisticated, non-scalable techniques developed to compute it
using computer geometry, numerical and symbolic analysis, formal methods, etc.

Systematic simulation
I Estimates Reach(T,P) by computing bunch of trajectories from P
I Also known as Barbaric reachability
I It works by

1. Sampling the parameter set P.
2. Computing and visualizing the simulation traces.
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Sampling Parameter Sets

In Breach, parameter sets P are defined as boxes (hyper-rectangles)

A parameter set can be refined into subsets by
I grid refinement, usually if P is of low dimension
I quasi-random refinement if P is high-dimensional

Additionally, the GUI allows to change parameters interactively with
automatic recomputation of trajectories
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Grid Refinement
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Grid Refinement
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Quasi-random Refinement

Quasi-random provides better repartition than uniform-random sampling
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Plotting simulation traces
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Barbarians can be sensitive

Sensitivity functions
sij(t) = ∂xi

∂pj
(t) can also be computed by CVodes solver

Note S(t,p) = (sij(t))i,j is called the sensitivity matrix.

Provides for a cheap estimate of Reach(t,P) by the affine transform of P:1

Reach(t,P) ' x(t,p0) + S(t,p0) · (P − p0)

1(Systematic Simulation Using Sensitivity Analysis Donzé, Maler, HSCC’07)
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Reachability using sensitivity

Reach(t,P)

P

I Works well for low dimensional P
I Otherwise, averaging sij(t) over samplings of P provides estimates of

global sensitivity / robustness
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Results on the acute inflammatory response model
Circles lead to health, crosses to death...

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p

ca

Considered parameters are the initial concentrations of pathogen and
anti-inflammatory agents
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1 Parameter Synthesis
Parametric Systems
Sensitive Systematic (aka Barbaric) Simulation

2 Parameter Synthesis with Formal Specifications
Signal Temporal Logic
Property parameters
Model parameters

3 Some Results and Concluding Remarks
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Temporal logics in a nutshell

Temporal logics specify patterns that timed behaviors of systems may or may not
satisfy.

The most intuitive is the Linear Temporal Logic (LTL), dealing with discrete
sequences of states.

Based on logic operators (¬, ∧, ∨) and temporal operators: “next”, “always”
(alw), “eventually” (ev) and “until” (U)
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Linear Temporal Logic

An LTL formula ϕ is evaluated on a sequence, e.g., w = aaabbaaa . . .

At each step of w, we can define a truth value of ϕ, noted χϕ(w, i)

LTL atoms are symbols: a, b:

i = 0 1 2 3 4 5 6 7 . . .
w = a a a b b a a a . . .

χa(w, i) = 1 1 1 0 0 1 1 1 . . .
χb(w, i) = 0 0 0 1 1 0 0 0 . . .
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LTL, temporal operators

© (“next”), alw (“globally”), ev (“eventually”) and U (“until”).

They are evaluated at each step wrt the future of sequences

w = a a a b b a a a . . .
©b (next) χ©b(w, i) = 0 0 1 1 0 0 0 ? . . .
alw a (always) χalwa(w, i) = 0 0 0 0 0 1? 1? 1? . . .
ev b (eventually) χevb(w, i) = 1 1 1 1 1 0? 0? 0? . . .
a U b (until) χaUb(w, i) = 1 1 1 0 0 0? 0? 0? . . .
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From LTL to STL

Extension of LTL with real-time and real-valued constraints

Ex: request-grant property
LTL G( r => F g)
Boolean predicates, discrete-time

MTL G( r => F[0,.5s] g )
Boolean predicates, real-time

STL G( x[t] > 0 => F[0,.5s]y[t] > 0 )
Predicates over real values , real-time
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STL examples
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STL examples

The signal is never above 3.5
ϕ := alw (x[t] < 3.5)

3.5
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STL examples

Between 2s and 6s the signal is between -2 and 2
ϕ := alw[2,6] (|x[t]| < 2)

2

2 s
6 s
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STL examples

Always |x|>0.5⇒ after 1 s, |x| settles under 0.5 for 1.5 s
ϕ := alw(x[t] > .5→ ev[0,.6] ( alw[0,1.5] x[t] < 0.5))

0.5

≤1 s 1.5 s

0.5

≤1 s 1.5 s

0.5

≤1 s 1.5 s
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STL Robust Semantics

Given ϕ, x and t, the quantitative satisfaction function ρ is such that:
ρϕ(x, t) > 0⇒ x, t � ϕ

ρϕ(x, t) < 0⇒ x, t 2 ϕ

STL Monitor ϕx : [0, T ] 7→ Rn

ok

¬ ok

ρϕ(x, t) > 0
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Quantitative Satisfaction, Example

Robust satisfaction can be computed efficiently for general formulas
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Quantitative Satisfaction, Example

Between 2s and 6s the signal is between -2.5 and 2.5
ϕ := alw[2,6] (|x[t]| < 2.5)

ρ = 0.7

Robust satisfaction can be computed efficiently for general formulas
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Quantitative Satisfaction, Example

Between 2s and 6s the signal is between -1 and -1
ϕ := alw[2,6] (|x[t]| < 2.5)

ρ = −0.8

Robust satisfaction can be computed efficiently for general formulas
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Quantitative Satisfaction, Example

Always |x|>0.5⇒ after 1 s, |x| settles under 0.5 for 1.5 s
ϕ := alw(x[t] > .5→ ev[0,1.] (alw[0,1.5]x[t] < 0.5))

0.5

≤1 s 1.5 s

0.5

≤1 s 1.5 s

0.5

≤1 s 1.5 s

ρ ?

Robust satisfaction can be computed efficiently for general formulas
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Robust satisfaction can be computed efficiently for general formulas
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Computing the robust satisfaction function
(Donze, Ferrere, Maler, Efficient Robust Monitoring of STL Formula, CAV’13)

I The function ρϕ(x, t) is computed inductively on the structure of ϕ
I linear time complexity in size of x is preserved
I exponential worst case complexity in the size of ϕ

I Atomic transducers compute in linear time in the size of the input
I Key idea is to exploit efficient streaming algorithm (Lemire’s)

computing the max and min over a moving window
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1 Parameter Synthesis
Parametric Systems
Sensitive Systematic (aka Barbaric) Simulation

2 Parameter Synthesis with Formal Specifications
Signal Temporal Logic
Property parameters
Model parameters

3 Some Results and Concluding Remarks
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Parametric-STL Formulas
STL formula where numeric constants are left unspecified.

“After 2s, the signal is never above 3”
ϕ := ev[2,∞] (x[t] < 3)
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Parametric-STL Formulas
STL formula where numeric constants are left unspecified.

“After 2s, the signal is never above 3”
ϕ := ev[2,∞] (x[t] < 3)

3

2
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Parametric-STL Formulas
STL formula where numeric constants are left unspecified.

“After τ s, the signal is never above π”
ϕ := alw[τ,∞] (x[t] < π)

π ?

τ ?
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Parameter synthesis for PSTL
I In general, looking for “tight” valuations
I E.g., ϕ := alw

(
x[t] > π → ev[0,τ1] ( alw[0,τ2] x[t] < π)

)
I Valuation 1: π ← 1.5, τ1 ← 1 s, τ2 ← 1.15 s
I Valuation 2 (tight): π ← .5, τ1 ← 0.65 s, τ2 ← 2 s
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Parameter synthesis for PSTL

Challenges
I Multiple solutions: which one to chose ?
I Tightness implies to “optimize” the valuation v(pi) for each pi

The problem can be simplified if the formula is monotonic in each pi, i.e.,
I If the formula holds for pi, then it will hold for p′

i > pi, or
I if the formula holds for pi, then it will hold for p′

i < pi

If the formula is not monotonic, parameters can be treated as a system
parameters (next section).
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Monotonic validity domains
I The validity domain D of ϕ and x is the set of valuations v s.t. x |= ϕ(v)
I A tight valuation is a valuation in D close to its boundary ∂D
I In case of monoticity, ∂D has the structure of a Pareto front which can be

estimated with generalized binary search heuristics

p1

p2

Exact D(x, ϕ)

x

x

x

* D(x, ϕ) ⊆ D(x, ϕ)
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Property parameters
Model parameters

3 Some Results and Concluding Remarks
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Parameter synthesis problem

Problem
Given the system:

p System S S(u(t), p)

Find p ∈ P such that S(u(t), p), 0 |= ϕ

Main idea
Guide the search of a solution using the quantitative measure of
satisfaction of ϕ
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Parameter synthesis with quantitative satisfaction
Given a formula ϕ, a signal x and a time t, we can compute ρϕ(x(p), t)

p System S x(t) STL Monitor ϕ
ok

¬ ok

ρϕ(x, t)

The synthesis problem can be reduced to solving

ρ∗ = max
p∈P

ρϕ(x, 0), with p∗ = arg max
p∈P

ρϕ(x, 0)

If ρ∗ > 0, we found a parameter value, “maximally robust”.

Actual robustness can be further assessed by
I Explore a neighborhood of p∗

I Compute different local and global sensitivity analysis (work by Mobilia,
Fanchon et al, applied to iron homeostasis
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Example 1: modeling iron homeostasis

I Specifications
Qualitative knowledge, quantitative measurements, partially formalizable

ϕ = alw[0,5](Fe_stable and Fe_high) and

ev[5,10](Fe_stable and Fe_low) until[tau, 50](Fe_depleted)

I Model

d

dt
Fe = k1TfR1 Tf − k2Fe FPN1a

+k3Fe

Problem: values for k1, k2, k3, etc

1(joint work with N. Mobilia, E. Fanchon, J-M Moulis et al)
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Angiogenesis2

I Found values for protein production rates leading to oscillations

2(Donzé,Fanchon,Gattepaille,Maler,Tracqui, PloS One, 2011)
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Apoptosis 3

I Transient “race” conditions between direct and mito. path define cell type
I Formalized three definitions (e.g. “(not dead) until (MOMP)”)
I Found contradiction between model prediction and experiments, tuned

parameters to fix consistency
3(Stoma, Donzé, Maler, Bertaux, Batt, Plos Comp. Bio. 2013)
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Conclusion and future work

I Advocated early simulation and visualization

I Simple, manual, coarse sampling and manipulation of parameter
values can often provide quickly great deal of information

I Breach was designed for this

I Then, harness the “right” optimization function with the “right”
optimization algorithm

I Quantitative satisfaction of STL formulas is an appealing idea but
I Difficult optimization problem in general: non-linear, non-smooth
I Actual robustness of the obtained solution is not easy to estimate either
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Concluding Remarks (From Oded’s opening of TSB 2011)

I The word towards indicates that we are not there
I But where is there?
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Concluding Remarks: Where is There?

Goal (say): handing a tool to biologists allowing to probe systems
simulation or data with intuitive, biologically relevant requirements

But
I Modeling is still a huge problem
I Even when modeling is (somewhat) figured out:

I Specification language standard?
I Training users?

I More collaborations are needed...

Alexandre Donzé Some Results and Concluding Remarks HSB’19 49 / 46



Concluding Remarks: Where is There?

Far.

But to some significant extent, Oded showed the way.

Inter-(disciplinary/domain) cooperation, wet/data biologists need
modeling, maths, physics, and CS tools

Open-mindness and ability to gather people around original projects using
cynical views if necessary is key and one of Oded greatest contribution to
the field in my opinion
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