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Continuous-time Markov chains

• X (t) time-dependent random variable.
• At times tn, observe jumps X ([tn, tn+1)) = ξn.
• ξn ∈ I, countable state-space.
• For transition rate matrix Q, elements qij and qi = −

∑
j qij ,

p(ξn | ξn−1, · · · ξ0) = p(ξn | ξn−1);
p(ξn = j | ξn−1 = i) = qij/− qi ;
tn − tn−1 ∼ exp(−qi ).
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Chapman-Kolmogorov

Would like Pij(s; t) = P(X (t) = j | X (s) = i) where t > s for all states
(matrix P(s; t)).
• Easy! Just solve Chapman-Kolmogorov equations:

∂Pij
∂t (s; t) =

∑
k

Pik(s; t)Qkj

• Not so easy when |I| is large.
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Brownian motion

[Einstein 1905, Langevin 1908] – The birth of stochastic calculus

• Isotropic jumps;
• unbounded continuous domain;
• vanishing transition

probabilities.
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Fluid limit

• Solving CK is hard.
• Fluid limit:

dX
dt = β(X ) + noise

• deterministic + stochastic.
• If stochastic << deterministic, solve classical ODE.
• ODE solution → mean behaviour, as N →∞.

[Fokker 1914, Planck 1917; Kolmogorov 1931]
Probability distribution evolution.
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Fluid limit

States naturally ordered in Rd ; and
transitions expressible in terms of states:

Differential CK equation = Master equation ≈ Fokker-Planck equation.

• x : I → Rd .
• q(ξ, ξ′)→ q(x, x + ∆x)
• Birth/death process, chemical reaction systems, etc.
• Under some scaling, conditions for fluid limit fulfilled.
• Approximation becomes exact in some limit of infinite state system

size (i.e. infinite state density, transition distance → 0).

[Van Kampen, Kurtz]
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Examples of pCTMCs

Figure 1: Predator-prey systems in ecology: the Lotka-Volterra model.

Michalis Michaelides (Informatics, UoE) Geometric fluid approximation for general continuous-time Markov chainsApril 2019 7 / 41



Differential equation approximations for Markov chains

[Darling & Norris, 2008]
• Map x : I → Rd , I discrete state-space.
• Define drift vector

β(ξ) ≈
∑
ξ′ 6=ξ

(
x(ξ′)− x(ξ)

)
q(ξ, ξ′)

• Then mapped process

x(ξ(t)) = x(ξ(0)) + M(t) +
∫ t

0
β(ξ(s))ds
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Differential equation approximations for Markov chains

• Construct drift vector field b(x) over continuous Rd .
• Solution to ẋt = b(xt):

xt = x0 +
∫ t

0
b(xs)ds,

converges to mapped CTMC solution

〈x(ξ(t))〉

(under scaling, etc.).

No general way to construct x, b(x); manual construction. Address this:
(1) algorithm to embed state-space,
(2) infer drift vector field.
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Fluid approximations for Q matrices

General idea
• ∃ fluid approximations for structured CTMCs

(e.g. populations, queues, etc.).
• Automate fluid approximation:

• embedding of states in Rd .
• construction of drift vector for dynamics in Rd .

• Procedure should be:
(1) close to manual constructions in simple cases;
(2) good enough for other cases (where no manual approximations
exist).
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The trivial embedding

• One can trivially embed into R|I|.
• Simple (trivial) calculation shows that the embedded mean satisfies

∂t〈xt〉 = Q>〈xt〉 ;

i.e. the C-K Equation!
• This is an exact representation (obviously).
• Slightly less trivial calculation: if Q = Q> (which generally does not

hold), any rotation would work.

• Spectral analysis of Q might help.
• Link to manifold learning.
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Laplacian eigenmaps

Construct map x : I → Rd , I discrete state-space.

Think of Q as a network (nodes are states, edges allowed transitions)

Allows Laplacian eigenmaps [Mikhail Belkin, 2003]

Properties:
• Preserve locality =⇒ limit transition size.
• Generally, as |I| increases, states get closer.
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Laplacian eigenmaps

Procedure:
• For network Q, construct unweighted Laplacian matrix L where

Lij = 1− δqij ,0 ∀i 6= j
and Lii = −

∑
j

Lij .

• Take d eigenvectors with d smallest eigenvalues (except 0).
• Give state coordinates of d-dimensional embedding.
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Gaussian process regression

Construct drift vector field b(x) over continuous Rd .

• Have
b(x(ξ)) = β(ξ)

only defined at x(ξ) points.
• What about the rest of the Rd domain?

• Regress! Gaussian processes can estimate values in between.
• Gaussian processes are Lipschitz continuous!

Some challenges:
• Kernel choice.
• Hyperparameter choice.
• Unknown Lipschitz constant.
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Laplacian eigenmaps + GP: sanity check

Does it produce standard embeddings (e.g. for pCTMCs)?

Theorem
Let C be a pCTMC, whose underlying transition graph is a multi-
dimensional grid graph. The unweighted Laplacian fluid approximation of
C coincides with the canonical fluid approximation in the hydrodynamic
scaling limit.
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A foray into diffusion maps

Generalisation1 of Laplacian eigenmaps.
Deals with:
• non-uniform sampling on the manifold p = e−U(x);
• (extension2) asymmetric graphs Q 6= Q>.

Backward diffusion operators:

− ∂t = H(α)
aa = ∆ + (r − 2(1− α)∇U) · ∇, and

− ∂t = H(α)
ss = ∆− 2(1− α)∇U · ∇.

1Ronald R. Coifman and Stéphane Lafon. “Diffusion maps”. In: Applied and
Computational Harmonic Analysis 21.1 (July 2006), pp. 5–30.

2Dominique C. Perrault-joncas and Marina Meila. “Directed Graph Embedding: an
Algorithm based on Continuous Limits of Laplacian-type Operators”. In: Advances in
Neural Information Processing Systems 24. Ed. by J. Shawe-Taylor et al. Curran
Associates, Inc., 2011, pp. 990–998.
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Geometric fluid approximation

• Start with general CTMC with generator matrix Q.
• Embed network in Rd using diffusion maps.
• Define drift vector on embedded nodes by pushing forward transitions.
• Use these as observations in a GP-regression model.
• Completely general, does not require a special population structure.

• We call this the Geometric Fluid Approximation.
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Example: birth and death

2 species birth-death process, embedded in R2 space.
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Figure 2: Sanity check – expect good agreement.
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Example: birth and death
2 species birth-death process, embedded in R|I| space.

...

Figure 3: Every state a dimension – expect perfect agreement.
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Example: Lotka-Volterra model

Foxes consume rabbits and decay.

R b=0.1−−−→ 2R;

R + F c=0.01−−−−→ 2F ;

F d=0.2−−−→ ∅.
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Example: Lotka-Volterra model

2 species Lotka-Volterra process, embedded in R2 space.

0.00 0.02 0.04 0.06 0.08
DM dimension: d = 1

0.05

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

DM
 d

im
en

sio
n:

 d
=

2

Trajectories on DM manifold
(Lotka-Volterra, s0 = (9, 21)).

SSA average
Fluid estimate

0 2 4 6 8 10 12 14
time (s)

0.020

0.015

0.010

0.005

0.000

0.005

0.010

0.015

Po
sit

io
n 

al
on

g 
di

m
en

sio
n 

d 
of

 D
M

Evolution along Diffusion Map dimensions
(Lotka-Volterra, s0 = (9, 21)).

SSA average, d = 0
SSA average, d = 1
Fluid estimate, d = 0
Fluid estimate, d = 1

Figure 4: LV with oscillations.
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Example: Lotka-Volterra perturbed

Perturbed 2 species Lotka-Volterra process, embedded in R2 space.
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Figure 5: LV with oscillations, rates corrupted by |0.5η|, η ∼ N (0, 1) noise.
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Example: gene ON-OFF
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Figure 6: The genetic switch model with a faster switching rate (5 · 10−3s−1),
showing how the fluid solution (red) diverges from the projected mean evolution
(blue) after t ≈ 20s; the qualitative aspects of the trajectory remain similar.
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Example: SIRS model

SIRS model Embedded in R3 space.
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Figure 7: Left: SIRS classical fluid embedding in R3. Right: SIRS DM embedding
in R3.
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First passage time (FPT) distribution
SIRS model Embedded in R3 space.
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Figure 8: FPT CDF → classical ODE estimate. Our construction is close.
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Summary

• No general way from ∂tP = Q>P → ∂tp = Hp.

• Ingredients:
• x : I → Rd — diffusion maps;
• β(ξ)→ b(x) — Gaussian process regression.

• State/transition agnostic bridge from discrete CTMC to continuous
diffusion process.
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Thank you

Feedback very welcome!
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Continuity conditions
For a master equation to converge to FPE:

1. Jump sizes must vanish

lim
∆t→0

{ 1
∆t p(x , t + ∆t | z , t)

}
= W (x | z , t);

lim
N→∞

W (x | z , t) = 0;

uniformly in x , z , t for |x − z | ≥ ε.
2. Drift vector field is

lim
∆t→0

1
∆t

∫
|x−z|<ε

dx (xi − zi ) p(x , t + ∆t | z , t) = Ai (z , t) + O(ε) ;

and
3. Diffusion matrix field is

lim
∆t→0

1
∆t

∫
|x−z|<ε

dx (xi−zi )(xj−zj) p(x , t+∆t | z , t) = Bij(z , t)+O(ε) ;

uniformly in z , ε, t.
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Unsupervised learning problem

High-dimensional data, x ∈ Rm.

Want to find
• low-dimensional projection,

• clusters.

3

3Coifman and Lafon, see n. 1.
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Usual assumptions

• Data D lie on lower dimensional manifold M⊂ Rm.

• M is continuous.

• Data not necessarily uniformly sampled on manifold:
density µ(x) = q(x) = e−U(x).

• What to examine...

• ... in order to recover map Ψ : D →M, and potential U?
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Kernel, kernel, on the wall
how similar am I to the other data points?

Capture geometry by constructing similarity graph W ,

Wij = k(xi , xj),

with k : D ×D → R>0, and

• symmetry, k(x , y) = k(y , x),

• p.s.d., k(x , y) ≥ 0.

Usually pick kε(x , y) = exp
(
−‖x − y‖2/ε

)
.
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Graph Laplacians and Random Walks

Normalised kernel (graph Laplacian)
as discrete-time Markov chain where:

pε(x , y) = kε(x , y)
dε(x) =

∫
M kε(x , y)dy ,

Transition probability after t steps:

pt(x , y) = Pt ,

where
P |f 〉 =

∫
M

p(x , y)f (y)dµ(y).
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Random Walks

Leverage spectral theory for MCs that are:
• ergodic,
• aperiodic, (stationary distribution is π(x))
• reversible.

Eigen-decompose R.W. on D:

Pψk = λkψk ,

s.t. 1 = λ0 > λ1 ≥ λ2 ≥ · · · ≥ λN−1 ≥ 0.
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Diffusion distance

Define diffusion distance:

Dt(x , y) , ‖pt(x , ·)− pt(y , ·)‖2
L2(M,dµ/π) ;

demand it matches Euclidean distance in mapped space:

‖Ψt(x)−Ψt(y)‖ = Dt(x , y) =
[∑

k
λ2t

k (ψk(x)− ψk(y))2
]1/2

.

Satisfy up to precision δ with

Ψt(x) ,
(
λt

1ψ1(x), λt
2ψ2(x), . . . , λt

dψd (x)
)
,

where d = max {k ∈ N | λt
k > δλt

1}.
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Anisotropic diffusion

What if µ(x) = q(x) = e−U(x) is non-uniform?
• Sampling M is biased,
• need to consider effects of q(x) = e−U(x).

Anisotropic kernel
k(α)
ε (x , y) = kε(x , y)

qαε (x)qαε (y) ,

α ∈ R≥0 can separate geometry from density.
• α = 0: normalised graph Laplacian (Laplacian eigenmaps);

• α = 1/2: Fokker-Planck as limit operator (more later);

• α = 1: Laplace-Beltrami operator ∆.

Michalis Michaelides (Informatics, UoE) Geometric fluid approximation for general continuous-time Markov chainsApril 2019 35 / 41



Limit operators4

Think of D as samples of

ẋ = −∇U(x) +
√

2ẇ .

In limit ε→ 0, N →∞
evolution operators of |f 〉:

∂

∂t |f 〉 = H(α)
f |f 〉 =

[
∆− 2α∇U · ∇+ (2α− 1)(‖∇U‖2 −∆U)

]
|f 〉 ,

− ∂

∂t |f 〉 = H(α)
b |f 〉 = [∆− 2(1− α)∇U · ∇] |f 〉 .

If µ(x) 6= c, α matters.

4Boaz Nadler et al. “Diffusion Maps, Spectral Clustering and Eigenfunctions of
Fokker-Planck Operators”. In: Advances in Neural Information Processing Systems 18.
Ed. by Y. Weiss, B. Schölkopf, and J. C. Platt. MIT Press, 2006, pp. 955–962.
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Anisotropic projections5

5Coifman and Lafon, see n. 1.
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Extension to directed graphs

6

6Perrault-joncas and Meila, see n. 2.
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Extension to directed graphs
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Asymmetric kernel

k(α)
ε (x , y) = hε(x , y) + aε(x , y);

hε(x , y) = kε(x , y)
qαε (x)qαε (y) ,

aε(x , y) = −aε(y , x) = r(x , y)
2 (y − x)hε(x , y).

Backward diffusion operators:

− ∂t = H(α)
aa = ∆ + (r − 2(1− α)∇U) · ∇, and

− ∂t = H(α)
ss = ∆− 2(1− α)∇U · ∇.

Michalis Michaelides (Informatics, UoE) Geometric fluid approximation for general continuous-time Markov chainsApril 2019 40 / 41



Stochastic processes and associated generators

Related as limiting cases7.

Case Operator Stochastic Process
ε > 0
N <∞

finite N × N
matrix P

R.W. in discrete space
discrete in time (DTMC)

ε > 0
N →∞

operators
Tf ,Tb

R.W. in continuous space
discrete in time

ε→ 0
N <∞

infinitesimal generator
matrix Q ∈ RN×N

Markov jump process; discreet
in space, continuous in time

ε→ 0
N →∞

infinitesimal
generator Hf

diffusion process
continuous in space & time

7Boaz Nadler et al. “Diffusion maps, spectral clustering and reaction coordinates of
dynamical systems”. In: Applied and Computational Harmonic Analysis 21.1 (July
2006), pp. 113–127.
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