A Hybrid HMM Approach for the Dynamics of DNA Methylation

Charalampos Kyriakopoulos, Pascal Giehr, <u>Alexander Lück</u>, Jörn Walter, Verena Wolf

HSB 2019 6th Workshop on Hybrid Systems & Biology April 06, 2019

Results

Importance of Epigenetics

Every cell contains the whole genome and therefore the "blueprints" for <u>all</u> producible proteins.

Why do some cells develop diseases?

Model

Results

DNA Methylation

....T A C G C C C T G T C G A...A T G C G G G A C A G C T....

Occurs (almost exclusively) on **cytosine** in **CpGs** (DNA sequence: C - Phosphor - G)

DNA methyltransferases (Dnmts) convert cytosine (C) to 5-methylcytosine (5mC)

Methylated cytosine hinders transcription of DNA into mRNA

Model

Results

Methylation and further modifications

cytosine (C): original unmodified base in DNA

5-methylcytosine (5mC): methylated C \rightarrow gene inactivation

5-hydroxymethylcytosine (5hmC): hydroxymethylated C \rightarrow gene activation

5-formylcytosine (5fC): formylated C \rightarrow active demethylation

Model

Results

Passive and active demethylation

Passive demethylation:

Losing methylation over time due to cell division and failed maintenance and/or decreasing methylation efficiency.

Active demethylation:

Results

Motivation

- Incorporate different types of event classes in the model: Events that only occur once at deterministic times (*discrete*; cell division and maintenance) and events that may occur more than once at random times (*continuous*; methylation cycle). → Existing models are either exclusively discrete or continuous.
- Solution Model and predict levels of 5fC. \rightarrow Important for active demethylation.

Modeling of (de)methylation events

Modeling via **Hidden Markov Model** with 16 hidden states (4 methylation states on double-stranded DNA) and 4 observable states (2 for each strand).

A detailed look into the individual processes:

Cell division:

Keep one strand as it is and synthesize a new complementary strand with only unmethylated cytosines.

Strand to keep is chosen randomly with probability 0.5.

Model

Maintenance methylation

States: C, 5mC, 5hmC, 5fC

Maintenance methylation only on hemi-methylated CpGs (rate μ_m) right after cell division.

Assumption based on previous results: No maintenance on hemi-hydroxylated and hemi-formylated CpGs

Model

Results

Continuous transitions

The reactions de novo μ_d hydroxylation η formylation ϕ demethylation δ may occur more than once in each cell division cycle.

States: C, 5mC, 5hmC, 5fC

Model

Results

Model dynamics

Discrete transitions at *fixed* times $t \in \{t_1, t_2, ..., t_n\}$: Cell division and maintenance (linked to replication fork) \rightarrow DTMC with transition probability matrix **P**

Continuous transitions at *random* times $t \in [t_i, t_{i+1}]$: Transitions within the methylation cycle (*de novo*, hydroxylation, formylation, active demethylation)

 \rightarrow CTMC with infinitesimal generator matrix ${\bf Q}$

Let $r \in \{\mu_m, \mu_d, \eta, \phi, \delta\}$, where μ_m is a transition probability and μ_d , η , ϕ , δ are transition rates.

Time dependent efficiencies, due to e.g. changing enzyme concentrations:

 $r(t) := \alpha_r + \beta_r \cdot t$

Introduce bounds in order to ensure *identifiability*:

 $0 \leq r(t) \leq ub$

Choose ub based on biological assumptions \rightarrow prohibit arbitrarily fast reactions

Results

Hidden and observable states

Hidden states: C, 5mC, 5hmC and 5fC **Observable states:** C and T

Data

Example data set:

Data for single copy gene Afp (alpha fetoprotein) containing 5 CpGs. Three data sets (BS, ∞ BS and MAB-Seq) to identify hidden states.

Parameter estimation via MLE. Similar results for all 5 CpGs \Rightarrow Show only aggregated results in the following.

Model

Results

Observable states

Good agreement between data (solid lines) and results from the model (dashed lines).

Model

Results

Hidden states

Model

Results

Efficiencies

Measured time points too far apart (only one measurement for each cell division cycle) \Rightarrow How often was the methylation cycle traversed?

No information about intermediate time points.

Summary

- Hybrid HMM (discrete for cell division and maintenance; continuous for methylation cycle events)
- Very flexible model (choice of time points for discrete events, efficiency function)
- Good prediction performance, however available data is not ideal so far

Thank you for your attention!