
Rejection-Based Simulation of 
Stochastic Spreading Processes 

on Complex Networks
Gerrit Großmann   

Verena Wolf 
Saarland University

img © Michael Kreil



 2

• Friendship networks 
• Online social networks 
• Telecommunication networks 
• Infrastructure networks 
• Biological and Ecological Networks 
• …

Networks are everywhere

Complex Networks
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Motivation
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• Infectious diseases 
• Computer viruses 
• Rumours/opinions/emotions  
• Blackouts 
• …

Understand spreading phenomena of 
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Spreading Process
• Fixed graph topology 
• Continuous time dynamics 
• Nodes have local states 
• Nodes' states change randomly w.r.t. rules 
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Classical example: SIS model
• 2 local states (infected, susceptible) 
• 2 rules (infection,     recovery) 



SIS Model

Infection (edge-based) Recovery (node-based)
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• 2 local states (infected, susceptible) 
• 2 rules (infection, recovery) 

(rate depends on neighborhood) (rate does not depend on neighborhood)
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Iteration over all nodes is very slow.:(



Stochastic Simulation 
Approaches

• Standard Gillespie Algorithm 

• Optimized Gillespie Algorithm 

• Event-Based Rejection Simulation (Our Method)
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Standard Gillespie
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Iteration over all neighbours of 
the updated node is needed.

:(



Stochastic Simulation 
Approaches

• Standard Gillespie Algorithm 

• Optimized Gillespie Algorithm 

• Event-Based Rejection Simulation (Our Method)
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Optimized Gillespie
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!24[1] Cota & Ferreira: Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks

What is the maximal rate at which an 

infected node attacks its neighbours?


(under all network configurations)



Optimized Gillespie
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What is the maximal rate at which an 

infected node attacks its neighbours?


(under all network configurations)

Maximal degree: 3

!25[1] Cota & Ferreira: Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks
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Actual (effective) rate: 

Upper bound:

[1] Cota & Ferreira: Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks
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Optimized Gillespie

Rejection step with probability:
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Actual (effective) rate: 

Upper bound:

[1] Cota & Ferreira: Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks

(upper bound)

1 2

3 4

0 43 2



Optimized Gillespie

Rejection step with probability:
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Rejection probability = Maximal rate - Effective rate
Maximal rate

Actual (effective) rate: 

Upper bound:

[1] Cota & Ferreira: Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks

(upper bound)
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Optimized Gillespie

Actual (effective) rate: 

Upper bound:

Rejection step with probability:

Not necessary to update whole 

neighbourhood of node 4

Potentially large number of rejections

:)
:(
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Rejection probability = Maximal rate - Effective rate
Maximal rate

[1] Cota & Ferreira: Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks
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Rejection Probabilities
Maximal degree: 3

Effective degree: 2

Degree: 2

Susceptible neighbors: 1

Reject with probabilityReject with probability
Upper bound
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Rejection Probabilities
Maximal degree: 3

Effective degree: 2

Degree: 2

Susceptible neighbors: 1

Reject with probabilityReject with probability
Upper bound

Rejection step with probability:
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Rejection Probabilities

Degree: 2

Susceptible neighbors: 1

Reject with probability

(high rejection probability when 
degree differences are large)

(high rejection probability for 
many infected nodes)

Maximal degree: 3

Effective degree: 2

Reject with probability



Stochastic Simulation 
Approaches

• Standard Gillespie Algorithm 

• Optimized Gillespie Algorithm 

• Event-Based Rejection Simulation (Our Method)
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Event-Driven Simulation
In each step

!36

1. Take first event from event queue.


2. Apply event to the network.


3. Generate new event(s).


Recovery of  node 2

Infection from node 1 to 2



Event-Driven Simulation
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Infection from node 1 to 2

In each Step
1. Take first event from event queue.


2. Check if event is applicable to network:


A. If Yes: apply event - Else: ignore


3. Generate new event(s).

Recovery of  node 2



Event-Driven Simulation
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In each Step
1. Take first event from event queue.


2. Check if event is applicable to network:


A. If Yes: apply event - Else: ignore


3. Generate new event(s) and check the events will be rejected 

later.


A. If Yes: go back to 3

B. Else: add events(s) to queue


Recovery of  node 2

Infection from node 1 to 2



Event-Driven Simulation
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In each Step
1. Take first event from event queue.


2. Check if event is applicable to network:


A. If Yes: apply event - Else: ignore 

3. Generate new event(s) and check the events will be rejected 

later.


A. If Yes: go back to 3 
B. Else: add events(s) to queue


Late 
Reject

Early 
Reject



Algorithm Outline
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1. Generate a curing event for each infected 
node + annotate node with its curing time


2. Generate an infection attempt for each 
infected node

Initialization
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Initialization

1. Take first event from queue

2. If event is applicable:


1. Change node states acc. to event

2. Generate two new events in case of infection


3. Else (Late Rejection):

1. Generate new infection attempt

In each step1 2

3 4

0



Algorithm Outline
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1. Take first event from queue

2. If event is applicable:


1. Change node states acc. to event

2. Generate two new events in case of infection


3. Else (Late Rejection):

1. Generate new infection attempt

1 2

3 4

0

1. Generate a curing event for each infected 
node + annotate node with its curing time


2. Generate an infection attempt for each 
infected node

Initialization

In each step



Early and Late Rejections
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Event 
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(Early Rejection)

Add to
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Yes
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Early and Late Rejections

Generate 

infection


event

Event 

might be 


successful

Event is 

applicable 

to graph

Apply

event

No

(Early Rejection)

Add to

queue No

(Late Rejection)

Yes Yes

!Early Rejections are cheaper!



Sample Run
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(Initialization)



Sample Run
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(Initialization)



Sample Run

!48

(Initialization)

3 will still be 
infected



Sample Run
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(Initialization)

2nd event



Sample Run
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(Initialization)

Apply this 
event



Sample Run
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(Iteration)

Recovery 
of 4



Sample Run
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(Iteration)



Sample Run
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(Iteration)
4 will already be 

recovered  already



Sample Run
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(Iteration)

Event not applicable (late rejection)



Sample Run
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(Iteration)

Generate new infection attempt



Sample Run
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(Iteration)
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Rejection Probabilities

Degree: 2

Susceptible neighbors: 1

Reject with probability

(high rejection probability when 
degree differences are large)

(high rejection probability for 
many infected nodes)

Upper bound

Maximal degree: 3

Effective degree: 2

Reject with probability



Rejection Probabilities
The degree differences are large There are many infected nodes
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Event queue

(Getting the next event is constant 

regardless of degree)

Early Rejections

(Infections towards infected neighbours 

can be discarded early on)



Generalizations

• Possible for most epidemic models (but not for all)


• Easy for weighted networks


• Easy for temporal networks (for external process which alters network) 


• Possible for non-Markovian dynamics (depends on formalism)
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Results (SIS)
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Results (SIR)
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Infected nodes become recovered before becoming susceptible again.



Results (SIR)

!62



Results (competing pathogens)
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Pathogen I and Pathogen II compete over susceptible nodes.



Results (competing pathogens)
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Conclusion
• Not Iterating over a node’s neighbourhood 

yields huge performance improvements 
• Event-based simulation reduces rejection 

steps significantly 
• Exploit problem structure for early rejections 
• Event-based simulation is very flexible and 

easy to adopt to different formalisms

Thank you

Rust Code: github.com/gerritgr/Rejection-Based-Epidemic-Simulation

https://github.com/gerritgr/Rejection-Based-Epidemic-Simulation


Correctness (Sketch)
• Same as for Optimized Gillespie


• Add shadow rule to system


• Interpret rejections not als rejections 
but as applications of the shadow rule


• Joint rate attributed to infection and 
shadow rule is always constant
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